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Abstract. The goal of this research is to analyze how a new evolutionary algorithm based on
Markov graphical model sclection of promising solutions finds the optimum for some kind of
functions. Probabilistic models have been used for the optimization of deceptive functions, for
example. PBIL, MIMIC, BOA, UMDA, BMDA, FDA, EBNA etc. However, all mentioned
algorithms arc restricted in the complexity of the models used in the search. The algorithm
presented in this paper, termed UEMMA (Unrestricted Evolutionary Markov Model Algo-
rithm) was tested with the known deceptive functions. Compared with the results of the others
authors the performance of this algonithm in gencral is not worse and in soine cases is belter.,
especially when the functions are more complex.

1 Introduction

Scarching for and using a stochastic structure of the space of solutions has been an
active line of rescarch within the ficld of genetic and evolutionary computation.
Whereas in genetic algorithms there are crossover and mutation algorithms, in Estima-
tion of Distribution Algorithms (EDA) they have been replaced by learning and sam-
pling of a probability distribution. This new approach for optimization emerged be-
causc the genetic algorithm paradigma needed the choice of suitable values for the
parameters, and this was converted into a ncw optimization problem as was shown by
Grefenstette [8]. This reason, together with the fact that the prediction of the move-
ment of the population in the scarch space is extemely difficult, has motivated the
birth of a new type of algorithm, EDA. The estimation of the joint distribution associ-
ated with the database containing the individuals of the population constitutes the
bottleneck of this new heuristic [9].The previous work began with PBIL (Population
Based Incremental Learning) by Baluja [1] and later improved by Baluja und Caruana
[2] where a single probability vector of binary independent variables is updated mov-
ing to the best vectors of the population, and a memory used as the information from
the previous iterations is preserved. In MIMIC, a framework by De Bonnet, Isabell
and Viola [4] the dependencies form a chain and the Kullback-Leibler divergence is
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used as measure of the fitting of the chain to the population of promising solutions.
Baluja and Davies [3] uses optimal dependency trees and the Kullback-Leibler diver-
gence is minimized. One of the most general approaches is the onc proposcd by Pe-
likan. Goldberg and Cantu-Paz, known as BOA [13]. This algorithm uscs a net where
each node can have k successors, allowing variables to be conditionally dependent on

sets of variables. The UMDA by Muhlenbein and Pass [11] uses the same type of
distribution as does PHIL algorithm, and the main difTerence is that a memory is used
in PHIL and in UMDA the collcction of vectors is used instcad. The BMDA by Pe-
likan and Miuhlenbein [14] covers second order interactions just as the case of
MIMIC. however, the structure used in BMDA is more general than the one in
MIMIC. Finally the FDA by Mohlenbein, Mahnig and Rodriguez [12] a factorization
of the distribution is given a priory depending of the problem. The estimation of
Bayesian Network Algorithm (EBNA) looks for the Bayesian Network whose  struc-
wre has the maximum posterior likelihood, and whose parameier can be computed

directly from the data set (7).

2 Algorithms Description

This paper presents an evolutionary stochastic algorithm that uscs as a searching
distribution an unrestricted structure in the class of graphic Markov Modcls (UMMA)

as is proposed by Diaz and Ponce de Leén [5]), defined as follows:

choose an initial population

determine the fitness of each individual

perform selection of individuals to be reproduced
repeat

perform crossover

perform muation

determine the fitness of cach individual

perform selection of individuals to be reproduced

until some stopping criterion applies

The learning model is represented by an hypergraph and is encoded using vectors
of binary variables. The graphical model selection algorithm obtains a model that best
fit the population of promising solutions using an algorithm for discrete Markov
model selection using the convex fitting index (CFI) based in an information measure
of divergence, the Kullack-Leibler, and a penalty criteria to accomplish simplicity of



Evolutionary Algorithm Based on a Markov Graphical Model Selection of Pronusing ... 343

the graph [5]. This indc_x was proposed because of its bhest performance compared
with other two indexes, in a simulated empirical study [Diaz, Ponce de Ledn. 2002].

The population generation uses the Gibbs-Sampler for a Graphic Markov Model de-
fined in Diaz and Ponce de Ledn, 2003 [6).

The UEMMA is defined as follows:

Gencrate a collection of n random vectors
Evaluate the objective function
if the termination condition is not satisfied continues
repeat
order by value
sclect nt from the best vectors
sclect and estimate the distribution (UMMA)
generate a new population with the Gibbs-Sampler
Evaluate the objective function

until some stopping criterion applics

The UEMMA gencrates a collection of random binary vectors in the first siep, sec-
ond step, evaluate the objective function, third step, if the termination condition is not
satisficd continues, fourth step, order the vectors and fifth step, selects the t percent of
the best evaluated vectors. Sixth step, select the structure of the Graphic Markov
Model that best accomplish the convex fitting index CFI and estimates the distribution
with the UMMA algorithm and seventh step, generates a new population using the
Gibbs-Sampler for a Graphic Markov Model [6], eight step, evaluate the objective
function and night step, if the termination condition is not satisticd go 1o the fourth
step and repeat.

3 Function Text
3.1 OneMax Problem

This is a well-known simple lincar problem used to test the convergence velocity and
the scalability. It can be defined as maximizing the function:
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Fomemas (X) = X" 21 X; (1)
Where x; is a binary variable for every i. This function has the global optimum at
(1.1,1....1).
3.2 Plateau Problem

This problem was proposed in Mihlenbein and Schlierkamp-Voosen [10]. The indi-
viduals of this function consists of a n-dimensional vector, such that n=mx3 (the genes
are divided into groups of three) The function is dcfined as:

Frea()= 2. 8(s,) 2)

i)

Where
g(s,) = g(X32, XprrX3i ) = il X502 =1, X351 =1, X5 =1

And zero in other case.  This function has the global optimum at (1,1,1...,1).

3.3 FC; Problem

This function has been proposed in Muhlenbein et al. (1999) [12] and is composed by
deceptive descomposable functions as follows:

(3.0 for x = (0,0,0,0,1) 3)
2.0 for x =(0,0,0,1,1)

1.0 for x =(0,0,1,1,1)

35 forx=(L1L,1L1,1)

4.0 for x =(0,0,0,0,0)

0.0 otherwise

F,“r(X)= 4

Foi= ) Fomi (s,) @

/=l
Where 5, = (x,,_“x,,_,,x,l_,,x,j_,,x,,) and n=5m.
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3.4 FC,Problem

This function has been proposed in Muhlenbein et al. (1999) [12] and is composed by
deceptive descomposable functions as follows:

0.595 for x =(0,0,0)
0.200 for x =(0,0,1)
0.595 forx =(0,1,0)
0.100 forx=(0,1,1)
1.000 for x=(1,0,0)
0.050 forx=(1,0,1)
0.090 forx=(1,1,0)
10.150 forx=(1,1,1)

(S)

F cupam (X)= 4

FA sixy= 4F cbam (x,,%,,%,) if x, =x, and x, = x, (6)
0 otherwise

Fedx)= ) F*aami (s) ()
J=1

Where 5, = (X;,_45Xs,-35Xs,-25X5;-1»X5,) and n=5m.

3 Experiment, results and discussion

The experiments designed consisted in fixing values of the parameters of the genetic
algorithm as follows: for the percent of the best fitted bedividuals in the population t
to generate the population t + 1 the value is 70, for the probability of selecting indi-
viduals at random for mutation the value is .1 , for the weighting coefficient in the
CFI fitting index the values is .7. With the combination of factors defined, and 70
percent of the population selected for the new population in the exploration of th.c
searching space, runs of the UEMMA for cach type of function were performed as is
shown in Table No. I .
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Table 1. Expcrimental Results

Problem OncMax OneMax Platcau Plateau  Fe, Feqp Fce Fc,
Variables 10 10 9 9 10 10 10 10
Mcan number 9 4 5 2 24 18 12 9

of Generations

Time 60.2 47.9 85 45 193.5 116.85 84.05 82.36
secs

Size of Popu- 100 300 100 300 100 300 100 300
lation

% of Selection 70 70 70 70 70 70 70 70

The preliminary experience with this algorithm shows, as firts sight that growing
the size of the population dimishes the mean number of generations to obtain the op-
timum. The oplimum was obtained in all functions. The One Max function is, of
course, the easiest 1o optimize, and the Fc, is the most difficult. The time of perform-
ance is proportional to the number of generations.

4 Conclusions and recommendations

As conclusion, the performance of tha algorithm UEMMA in these functions is like as
reported in the literature [12]. In general the algorithm has a good performance but
more experiments must be done with other functions and problems of different sizes.
A comparative study with other algorithms could give new ideas, especially about the
treatment of bigger problems.

As a recomendation it will be usefull to design a bigger experiment calibrating to-
gether the parameters of the model selection algorithm and of the optimization algo-

rithm in order 1o obtain new ideas of the relation between these two sets of parame-
ters.
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